Rao, J. G. S., Harris, B. G., & Cook, P. F. (1985a) Arch. Biochem. Biophys. 241, 67.

Rao, J. G. S., Harris, B. G., & Cook, P. F. (1985b) Arch. Biochem. Biophys. (submitted for publication).

Rose, I. A., O'Connell, E. L., Litwin, S., & Bar-Tana, J. (1974) J. Biol. Chem. 249, 5163.

Scharschmidt, M., Fisher, M. A., & Cleland, W. W. (1984) Biochemistry 23, 5471.

Schimerlik, M. I., & Cleland, W. W. (1977a) Biochemistry 16, 565.

Schimerlik, M. I., & Cleland, W. W. (1977b) *Biochemistry* 16, 576.

Uhr, M. L., Thompson, V. W., & Cleland, W. W. (1974) J. Biol. Chem. 249, 2920.

Viola, R. E., & Cleland, W. W. (1982) Methods Enzymol. 87, 353

Viola, R. E., Cook, P. F., & Cleland, W. W. (1979) Anal. Biochem. 96, 334.

Westheimer, F. H. (1963) Proc. Chem. Soc., London, 253. Westheimer, F. H., & Jones, W. A. (1941) J. Am. Chem. Soc. 63, 3282

Yonetani, T., & Theorell, H. (1964) Arch. Biochem. Biophys. 106, 243.

Kinetics of Rapid Ca²⁺ Release by Sarcoplasmic Reticulum. Effects of Ca²⁺, Mg²⁺, and Adenine Nucleotides[†]

Gerhard Meissner,* Edward Darling, and Julia Eveleth

Departments of Biochemistry and Nutrition and of Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514

Received May 14, 1985

ABSTRACT: A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca^{2+} , adenine nucleotides, and Mg^{2+} on the Ca^{2+} release behavior of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid $^{45}Ca^{2+}$ efflux from passively loaded vesicles was blocked by the addition of Mg^{2+} and ruthenium red. At pH 7 and 10^{-9} M Ca^{2+} , vesicles released $^{45}Ca^{2+}$ with a low rate (k=0.1 s⁻¹). An increase in external Ca^{2+} concentration to 4 μ M or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(β , γ -methylenetriphosphate) (AMP-PCP) resulted in intermediate $^{45}Ca^{2+}$ release rates. The maximal release rate was observed in media containing 4 μ M Ca^{2+} and 5 mM AMP-PCP and had a first-order rate constant of 30–100 s⁻¹. Mg^{2+} partially inhibited Ca^{2+} - and nucleotide-induced $^{45}Ca^{2+}$ efflux. In the absence of AMP-PCP, $^{45}Ca^{2+}$ release was fully inhibited at 5 mM Mg^{2+} or 5 mM Ca^{2+} . The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca^{2+} release by ATP and AMP-PCP were 1.6–1.9. The Hill coefficient of Ca^{2+} activation (n=0.8–2.1) was dependent on nucleotide and Mg^{2+} concentrations, whereas the one of Mg^{2+} inhibition (n=1.1–1.6) varied with external Ca^{2+} concentration. These results suggest that heavy SR vesicles contain a " Ca^{2+} release channel" which is capable of conducting Ca^{2+} at rates comparable with those found in intact muscle. Ca^{2+} , AMP-PCP (ATP), and Mg^{2+} appear to act at noninteracting or interacting sites of the channel.

Darcoplasmic reticulum (SR)¹ forms a distinct intracellular membrane compartment that regulates the contraction-relaxation cycle of muscle by releasing and reabsorbing Ca²⁺ [for reviews, see Ebashi (1976), Endo (1977), Winegrad (1982), Martonosi & Beeler (1983), and Inesi (1985)]. Release of Ca²⁺ from SR is triggered by an action potential at the neuromuscular junction that is communicated to SR via the T system. The mechanism by which Ca²⁺ is released from SR, however, has remained unclear. Mechanisms proposed to explain physiological release of Ca²⁺ include induction by Ca²⁺, "depolarization" of the SR membrane, a change in membrane surface charge, and/or a pH gradient (Ebashi, 1976; Endo, 1977; Winegrad, 1982).

Of particular relevance to this study is the Ca²⁺-induced Ca²⁺ release hypothesis which states that a small amount of

Ca²⁺ moving into the sarcoplasm during an action potential induces the release of sufficient Ca²⁺ from SR to activate muscle contraction. In support of this hypothesis, skinned muscle fibers (Stephenson, 1981; Fabiato, 1983) and "heavy" SR vesicles obtained by centrifugation between 2000g and 10000g (Onishi, 1981; Yamamoto & Kasai, 1982; Miyamoto & Racker, 1982; Kirino et al., 1983; Morii & Tonomura, 1983; Nagasaki & Kasai, 1983; Kim et al., 1983; Meissner, 1984) possess a Ca²⁺ permeability mechanism which is activated by micromolar concentrations of Ca²⁺. Caffeine and adenine nucleotides (ATP, ADP, AMP, adenosine, adenine) potentiated Ca²⁺-induced Ca²⁺ release, whereas Mg²⁺ was inhibitory.

In this report, we describe a radioisotope flux-rapidquench-Millipore filtration technique to determine the effects of Ca²⁺, adenine nucleotides, and Mg²⁺ on the Ca²⁺ release

[†]Supported by U.S. Public Health Service Grant AM18687.

^{*} Correspondence should be addressed to this author at the Department of Biochemistry and Nutrition, The University of North Carolina at Chapel Hill.

 $^{^1}$ Abbreviations: SR, sarcoplasmic reticulum; EGTA, ethylene glycol bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid; AMP-PCP, adenosine 5'-(β , γ -methylenetriphosphate); Pipes, 1,4-piperazinediethane-sulfonic acid.

behavior of heavy SR vesicles. Our studies suggest that heavy SR vesicles possess a "Ca²⁺ release" channel which contains interacting regulatory binding sites for Ca²⁺, adenine nucleotides, and Mg²⁺. In the presence of millimolar concentrations of AMP-PCP, a nonhydrolyzable ATP analogue, and micromolar concentrations of Ca²⁺, the vesicles released Ca²⁺ with rates close to those expected to occur in muscle. A preliminary account of part of this work has been presented (Meissner & Darling, 1985).

MATERIALS AND METHODS

Reagents. ⁴⁵Ca²⁺ was purchased from ICN Pharmaceuticals, Irvine, CA. The ATP analogue AMP-PCP was obtained from Sigma, St. Louis, MO. All other reagents were of reagent grade.

Isolation of SR Vesicles. Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into "heavy Ca²⁺ release" and "light control" vesicle fractions by differential and sucrose gradient centrifugation as described previously (Meissner, 1984). Homogenization and sucrose gradient solutions contained the protease inhibitor phenylmethanesulfonyl fluoride at concentrations of 2 and 0.2 mM, respectively. Ca²⁺ release fractions were recovered from the 36-45% region of sucrose gradients that contained membranes sedimenting at 2600-35000g. Control fractions were recovered in the 30-34% region of sucrose gradients containing membranes obtained by differential pelleting at 35000-130000g.

Isotope Flux Measurements. ⁴⁵Ca²⁺ efflux rates from vesicles passively loaded with ⁴⁵Ca²⁺ were determined by Millipore filtration, as previously described (Meissner, 1984). Briefly, ⁴⁵Ca²⁺ was equilibrated across the vesicle membranes by incubation for 2 h at 22 °C in a medium containing 20 mM K-Pipes, pH 7, 0.1 M KCl, 0.1 mM EGTA, and either 0.6 or 5.1 mM ⁴⁵Ca²⁺. ⁴⁵Ca²⁺ efflux was initiated by diluting vesicles into isoosmolal unlabeled release media containing varying concentrations of free Ca²⁺, adenine nucleotide, and Mg²⁺. ⁴⁵Ca²⁺ efflux was terminated by placing the vesicles on 0.45-μm HAWP Millipore filters followed by rapid rinsing to remove extravesicular ⁴⁵Ca²⁺. ⁴⁵Ca²⁺ radioactivity retained by the vesicles on the filters was determined by liquid scintillation counting.

An Update System 1000 chemical quench apparatus (Madison, WI) was used in experiments which required resolving times in the millisecond range. The Update System consists of an electronically driven ram which was programmed to push three or four syringes simultaneously with a speed of 1 cm/s. ⁴⁵Ca²⁺ release in the absence of nucleotide was measured by using three syringes and two Update four-grid acrylic mixing chambers with 1.6-µL dead volume. Unless otherwise indicated, four syringes and three mixing chambers were used to measure rapid nucleotide-stimulated ⁴⁵Ca²⁺ efflux from SR vesicles passively loaded with 0.5 or 5 mM ⁴⁵Ca²⁺. One 0.5-mL syringe was filled with the vesicle suspension and three 2-mL syringes with three mixing solutions to achieve the following sequence of conditions: (1) dilution of vesicles into a medium containing EGTA to yield a final free Ca²⁺ concentration of 5 μ M or less; (2) stimulation of 45 Ca²⁺ efflux by the addition of ATP or the nonhydrolyzable ATP analogue AMP-PCP; and (3) inhibition of ⁴⁵Ca²⁺ efflux by the addition of Mg²⁺ and ruthenium red. Reaction times were determined by varying the lengths of the aging hoses between the mixing chambers. Millipore filtration separated untrapped and released 45Ca²⁺ from 45Ca²⁺ retained by the vesicles.

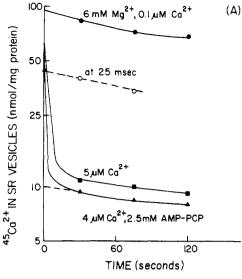
 $^{45}\text{Ca}^{2+}$ efflux measurements were carried out at least in duplicate with three or more time points. For a given preparation, the standard errors were $\pm 10\%$ or less.

Biochemical Assays. Protein was determined by the Lowry method using bovine serum albumin as a standard. Free Ca²⁺ and Mg²⁺ concentrations were calculated according to a computer program using binding constants published by Fabiato (1981). Measurements with an Orion divalent cation selective electrode in a buffer containing 0.1 M NaCl and 20 mM NaPipes, pH 7, indicated a similar apparent association constant for the Mg-ATP complex $[K = (1.0 \pm 0.6) \times 10^4 \text{ M}^{-1}]$ and Mg-AMP-PCP complex $[K = (0.9 \pm 0.6) \times 10^4 \text{ M}^{-1}]$. Free Mg²⁺ concentrations in the presence of AMP-PCP were therefore calculated by using the ATP binding constants published by Fabiato.

RESULTS

Effect of Ca²⁺ and AMP-PCP on ⁴⁵Ca²⁺ Release. Figure 1 compares the ⁴⁵Ca²⁺ efflux rates of a heavy SR vesicle fraction passively loaded with 5 mM ⁴⁵Ca²⁺ and diluted into different media. Between 80 and 100 nmol of ⁴⁵Ca²⁺/mg of protein was retained by the vesicles when samples were diluted into a medium containing 6 mM Mg²⁺ and 0.1 µM free Ca²⁺ (Figure 1A). About 90% of the trapped 45Ca2+ could be released within 30 s by diluting vesicles into Mg2+-free media containing $\sim 5 \mu M$ free Ca²⁺ and 0 or 2.5 mM AMP-PCP. The nonhydrolyzable ATP analogue AMP-PCP was used rather than ATP in order to avoid reuptake of the released ⁴⁵Ca²⁺ by the SR Ca²⁺ pump. Data of Figure 1A are in accord with previous findings that isolated heavy SR vesicles contain a Ca²⁺ release channel which is activated in the absence of Mg²⁺ by micromolar concentrations of external Ca²⁺. The small amount of ⁴⁵Ca²⁺ remaining with the vesicles 1-2 min after dilution indicated that a small fraction of the vesicles lacked the channel (Meissner, 1984).

Two effective inhibitors of Ca²⁺-induced Ca²⁺ release from SR are Mg²⁺ and ruthenium red (Stephenson, 1981; Onishi, 1981; Yamamoto & Kasai, 1982; Miyamoto & Racker, 1982; Meissner, 1984). We have used these two compounds to stop Ca²⁺ release in a rapid mixing apparatus at time intervals ranging from 25 to 1000 ms. ⁴⁵Ca²⁺ efflux measurements in nucleotide-containing media involved either two or three mixing steps. Either vesicles were diluted directly into the nucleotide-containing medium or the external free Ca²⁺ concentration was initially lowered to 5 µM or less before addition of the nucleotide medium in a second mixing step. In Figure 1A, vesicles present in 5 mM ⁴⁵Ca²⁺ were diluted directly into a medium containing 2.5 mM AMP-PCP. EGTA and Ca²⁺ concentrations and the pH of the dilution medium were adjusted so that after mixing the vesicles were present in 4 μ M free Ca²⁺ at pH 7. In a second mixing chamber, ⁴⁵Ca²⁺ efflux was stopped after 25 ms by the addition of 6 mM Mg²⁺ and 10 μM ruthenium red. The untrapped and released ⁴⁵Ca²⁺ was removed by the relatively slow Millipore filtration technique. Figure 1 A shows that the addition of Mg²⁺ and ruthenium red at 25 ms effectively blocked ⁴⁵Ca²⁺ release from vesicles initially present in a medium containing 4 μM free Ca²⁺ and 2.5 mM AMP-PCP. Ca²⁺ release from the Ca²⁺-permeable vesicle fraction in the absence of the two quenching agents followed first-order kinetics, being nearly completed within 0.1 s (Figure 1B). In media containing 5 μM Ca²⁺, the vesicles released ⁴⁵Ca²⁺ with an initial rate of about 0.1 μ mol of Ca²⁺ (mg of protein)⁻¹ s⁻¹ ($k = 1.15 \text{ s}^{-1}$). Addition of 2.5 mM AMP-PCP to the release medium increased the initial ⁴⁵Ca²⁺ release rate to 3 µmol of Ca²⁺ (mg of protein)⁻¹ s^{-1} ($k = 35 s^{-1}$).


Similar rate constants of $^{45}\text{Ca}^{2+}$ release were obtained when the external free Ca²⁺ concentration was lowered to 4 μM before the nucleotide was added, or when vesicles were diluted

238 BIOCHEMISTRY MEISSNER ET AL.

 4×10^{-6}

 4×10^{-6}

 5×10^{-3}

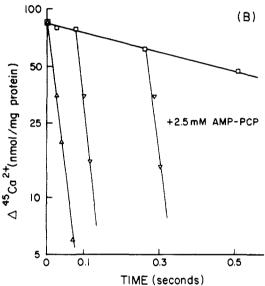


FIGURE 1: Measurement of ⁴⁵Ca²⁺ efflux rates. A heavy SR Ca²⁺ release fraction, preincubated for 2 h at 22 °C in the presence of 5 mM ⁴⁵Ca²⁺, was diluted into 20 mM K-Pipes, pH 7.0, and 0.1 M KCl medium containing amounts of Mg²⁺, EGTA, and AMP-PCP so that release media after the addition of the vesicles contained 6 mM Mg²⁺ plus 0.1 μ M free Ca²⁺ [(\bullet) in panel A], 5 μ M free Ca²⁺ [5 mM EGTA plus 4.65 mM Ca²⁺; (\blacksquare) in panel A, (\square) in panel B], or 4 μ M free Ca²⁺ plus 2.5 mM AMP-PCP [(Δ) in panel A, (Δ) in panel B]. An Update System 1000 chemical quench apparatus was used in experiments which required a resolving time of less than 1 s. Vesicles were diluted directly into the release medium [(0) in panel A, (\Box , Δ) in panel B] or were initially mixed with 4 volumes of a 6.25 mM EGTA-4.45 mM Ca²⁺ medium to lower the free external Ca²⁺ concentration from 5 mM to 4 μ M before adding the nucleotide medium in a second mixing step after 72 or 260 ms [(♥) in panel B]. Rapid ⁴⁵Ca²⁺ efflux was inhibited by the addition of 6 mM Mg²⁺ and 10 µM ruthenium red. Vesicles were subsequently placed on 0.45- μ m Millipore filters and rinsed with a medium containing 6 mM Mg²⁺ and 10 μ M ruthenium red. The amount of ⁴⁵Ca²⁺ initially trapped by all of the vesicles (95 nmol/mg of protein) as well as the amount not readily released by a subpopulation of vesicles (10 nmol/mg of protein) was obtained by back-extrapolation to the time of vesicle dilution. In panel B, the time course of ⁴⁵Ca²⁺ efflux from the vesicle population capable of rapid Ca²⁺ release (85 nmol/mg of protein) was obtained by subtracting the amount not readily released (10 nmol/mg of protein).

directly into a 4 μ M Ca²⁺ medium containing 2.5 mM AMP-PCP (Figure 1B). Other control experiments indicated that the time course of ⁴⁵Ca²⁺ release was not significantly affected when mixing rates were varied by changing the ram speed of the rapid-quench apparatus from 1 cm/s to 0.8 or

ble I: Ca2+ Release Properties of a Heavy SR Vesicle Fracti					
additi	⁴⁵ Ca ²⁺ efflux, k				
free Ca2+ (M)	Mg ²⁺ (M)	AMP-PCP (M)	(s^{-1})		
10-8	5 × 10 ⁻³		0.004		
10-8			0.1		
10-8		5×10^{-3}	24		
10^{-8}	8×10^{-3}	5×10^{-3}	0.04		
4×10^{-6}	5×10^{-3}		0.004		
4×10^{-6}			1.5		

 5×10^{-3}

 5×10^{-3}

90

1.1

0.01

^a Heavy SR vesicles were passively loaded with 5 mM ⁴⁵Ca²⁺, and the time course of ⁴⁵Ca²⁺ efflux from the Ca²⁺-permeable vesicle population was determined as indicated in Figure 1. ⁴⁵Ca²⁺ release in the presence of the nucleotides was determined by initially lowering the free Ca²⁺ concentration to 4 μ M or less before adding the nucleotide medium in a second mixing step. Of the trapped ⁴⁵Ca²⁺, 90% (105 nmol/mg of protein) was rapidly released in a Mg²⁺-free medium containing 4 μ M free Ca²⁺.

 8×10^{-3}

1.6 cm/s (cf. Materials and Methods). On the other hand, the direct dilution method yielded a higher initial release rate when the final free Ca²⁺ concentration was less than 0.1 μ M (not shown). This suggested that at low Ca²⁺ concentrations, chelation of Ca²⁺ by EGTA was not sufficiently rapid to prevent Ca²⁺-induced, nucleotide-stimulated Ca²⁺ release (see below). Therefore, in the experiments described below, we studied the kinetics of AMP-PCP activation of Ca²⁺ release by lowering the free Ca²⁺ concentration from 0.5 or 5 mM to 5 μ M or less in an initial mixing step. Minimal nucleotide-stimulated ⁴⁵Ca²⁺ efflux rates were obtained when the nucleotide was added 50–100 ms after the Ca²⁺ concentration was lowered to below 10⁻⁸ M by the addition of EGTA.

It is conceivable that release of positively charged Ca^{2+} resulted in formation of a large membrane potential, which in turn might have slowed Ca^{2+} efflux. However, addition of the K^+ ionophore valinomycin (15 μ M) to a release medium containing 4 μ M free Ca^{2+} and 2.5 mM AMP-PCP did not appreciably affect ⁴⁵ Ca^{2+} efflt x (data not shown). The intrinsic permeability of the vesicles to K^+ , H^+ , and Cl^- (Meissner, 1983) was probably sufficient to prevent formation of a retarding membrane potential during Ca^{2+} release.

In agreement with a previous study (Meissner, 1984), a majority of light SR vesicles were found to lack a permeation system that mediates rapid Ca²⁺ release under the experimental conditions of Figure 1 (not shown). In another control experiment using [¹⁴C]sucrose, we found that Ca²⁺ and AMP-PCP did not exert their activating effects by nonspecifically breaking down the permeability barrier of the vesicles (not shown). A slight increase in the [¹⁴C]sucrose permeability of the Ca²⁺ release vesicles was, however, observed in media containing AMP-PCP, raising the possibility that sucrose slowly permeates through the "open" channel.

Table I summarizes the results of rapid-quench experiments carried out with a heavy SR vesicle fraction passively loaded with 5 mM 45 Ca²⁺. The concentrations of three components in the release medium—free Ca²⁺, Mg²⁺, and nucleotide—dramatically affected the rate constant of 45 Ca²⁺ release. A maximal rate constant of 90 s⁻¹ with an initial release rate of 8 μ mol of Ca²⁺ (mg of protein)⁻¹ s⁻¹ was observed for vesicles passively loaded with 5 mM 45 Ca²⁺ and diluted into a release medium containing 4 μ M free Ca²⁺ and 5 mM AMP-PCP. Thus, in vitro SR vesicles demonstrate rates of Ca²⁺ release close to those measured in muscle (Baylor et al., 1983; Melzer et al., 1984). Lowering the free Ca²⁺ concentration from 4 μ M to 10^{-8} M and omission of the nucleotide decreased the

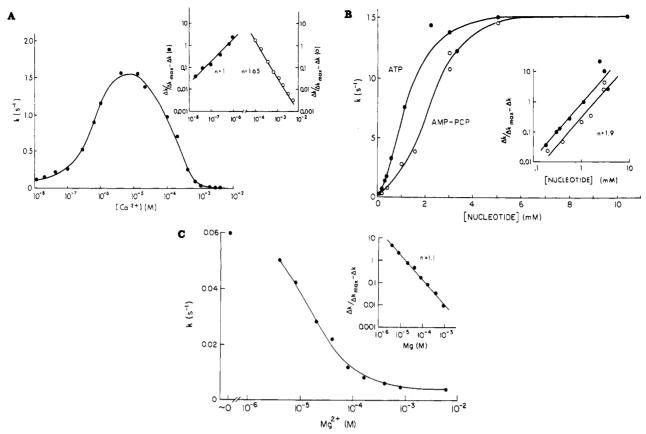


FIGURE 2: Dependence of $^{45}\text{Ca}^{2+}$ efflux rate constants on external Ca^{2+} , adenine nucleotide, and Mg^{2+} concentrations. (A) A heavy SR Ca^{2+} release fraction, perincubated for 2 h at 22 °C with 5 mM $^{45}\text{Ca}^{2+}$, was diluted into 20 mM K-Pipes, pH 7.0, and 0.1 M KCl release media containing amounts of EGTA and Ca^{2+} to yield the indicated final concentrations of free Ca^{2+} . The time course of rapid $^{45}\text{Ca}^{2+}$ efflux from the Ca^{2+} -permeable vesicle fraction was determined by using the Update rapid-quench apparatus with two mixing chambers. The apparent n value of Ca^{2+} activation of Ca^{2+} release was calculated according to the equation $\Delta k/(\Delta k_{\text{max}} - \Delta k) = K[\text{Ca}]^{n_{\text{Ca}}}$ where Δk indicates the difference in rate constants at a given free Ca^{2+} concentration and a minimally activating (10^{-8}M) concentration of free Ca^{2+} . Δk_{max} is the difference in rate constants at maximally and minimally activating concentrations of free Ca^{2+} . n_{Ca} indicates the apparent number of activating Ca^{2+} binding sites per channel, and K is an apparent binding constant. The apparent n value of Ca^{2+} inactivation of Ca^{2+} release was calculated by subtracting from the measured rate constants the rate constant calculated in the presence of $10 \mu \text{M}$ ruthenium red plus 6 mM Mg^{2+} ($k = 0.005 \text{ s}^{-1}$). (B) The time course of $k = 0.005 \text{ s}^{-1}$ (B) The time course of $k = 0.005 \text{ s}^{-1}$ (B) The time course of $k = 0.005 \text{ s}^{-1}$ (B) The time course of $k = 0.005 \text{ s}^{-1}$ (B) The time course of $k = 0.005 \text{ s}^{-1}$ (C) Vesicles passively loaded with 0.5 mM $k = 0.005 \text{ s}^{-1}$ (C) Vesicles passively loaded with 0.5 mM $k = 0.005 \text{ s}^{-1}$ (C) Vesicles passively loaded with 0.5 mM $k = 0.005 \text{ s}^{-1}$ (C) Vesicles passively loaded with 0.5 mM $k = 0.005 \text{ s}^{-1}$ (C) Vesicles passively loaded with 0.5 mM $k = 0.005 \text{ s}^{-1}$ release were o

⁴⁵Ca²⁺ efflux rate constant by a factor of 900. An increase in the free Ca2+ concentration back to 4 µM or addition of AMP-PCP to the low-Ca2+ medium resulted in intermediate release rates. Mg2+ and high concentrations of Ca2+ had strong inhibitory effects. Addition of 8 mM Mg²⁺ to the 5 mM AMP-PCP media containing 10⁻⁸ M or 4 μ M Ca²⁺ reduced the release rates to values seen in the absence of nucleotide. In the absence of nucleotide, both Mg2+ and Ca2+ fully inhibited ⁴⁵Ca²⁺ release at a concentration of 5 mM. Some variations in the ⁴⁵Ca²⁺ efflux rates were noted. In the presence of 4 µM free Ca2+, vesicles typically released 45Ca2+ with a first-order rate constant of 1-2.5 s⁻¹. Addition of 5 mM AMP-PCP to the release medium increased the first-order rate constant to 30-100 s⁻¹. The difference in the release activity of the vesicle fractions can be most easily explained by assuming that the more active vesicle fractions contained a larger number of Ca²⁺ release channels per vesicle.

Regulation of Ca^{2+} Release by Ca^{2+} , Adenine Nucleotides, and Mg^{2+} . We have formulated a simple model (see Figure 5) to analyze the effects of Ca^{2+} , adenine nucleotide, and Mg^{2+} on Ca^{2+} release as shown in Table I. The model assumes that

the SR Ca2+ release channel (E) is an allosteric enzyme which contains interacting regulatory binding sites for Ca²⁺, adenine nucleotide, and Mg^{2+} . The channel is present in its ligand-free form, designated E_0 , in the absence of external Ca^{2+} (<10⁻⁸ M), ATP (AMP-PCP), and Mg²⁺. Distinct channel intermediates, e.g., E_{Ca} , E_{A} , and E_{Mg} , are assumed to be formed by diluting the vesicles into media containing optimally activating concentrations of Ca2+ or nucleotide or inhibitory concentrations of Mg2+. The kinetics of channel activation and inhibition have been investigated by systematically varying the Ca²⁺, nucleotide, and Mg²⁺ concentrations in the release media and expressing the flux data in the form of simplifield equations for allosteric enzymes, i.e., Hill equations. Hill plot analysis has been found useful in determining the permeation behavior of another ligand-gated ion channel, the acetylcholine receptor ion channel. Ion flux and direct binding studies have indicated that the channel is opened by the binding of two molecules of agonist to two interacting subunits of the channel (Walker et al., 1982; Neubig et al., 1982).

Activation and Inhibition of the Ligand-Free E_0 Channel Form. Data of Table I indicate that the ligand-free E_0 form

240 BIOCHEMISTRY MEISSNER ET AL.

Table II: Regulation of 45Ca2+ Release by Ca2+, AMP-PCP, and Mg2+

	ligands				
reaction	free Ca ²⁺ (M)	AMP-PCP (M)	Mg ²⁺ (M)	$n_{\rm app}^{a}$	$L_{50}^{b}(M)$
$E_0 \rightleftharpoons E_{Ca}$	10-9-10-5			1.0	5 × 10 ⁻⁷
$E_A \rightleftharpoons E_{ACa}$	10 ⁻⁹ -10 ⁻⁵	5×10^{-3}		0.8	9×10^{-7}
$E_{Mg} \rightleftharpoons E_{Mg,Ca}$ $E_{A,Mg} \rightleftharpoons E_{A,Mg,Ca}$ $E_0 \rightleftharpoons E_A$	10 ⁻⁹ -10 ⁻⁵		10^{-3}	1.35	1.3×10^{-6}
$E_{A.M.s} \rightleftharpoons E_{A.M.s.C.a}$	$10^{-9}-10^{-5}$	5×10^{-3}	5×10^{-3}	2.1	2×10^{-6} c
$E_0 \rightleftharpoons E_A$	10^{-9}	$(0-5) \times 10^{-3}$		1.9	2×10^{-3}
$E_{Ca} \rightleftharpoons E_{Ca,A}$	4×10^{-6}	$(0-5) \times 10^{-3}$		1.6	1.6×10^{-3}
$E_0 \rightleftharpoons E_{Mg}$	10^{-9}	, ,	$(0-5) \times 10^{-3}$	1.1	2×10^{-5}
$E_{Ca} \rightleftharpoons E_{Ca,Mg}$	5 × 10 ⁻⁶		$(0-5) \times 10^{-3}$	1.55	1.0×10^{-4}
$E_{Ca} \rightleftharpoons E_{Ca}^{i}$	$(5 \times 10^{-6}) - (5 \times 10^{-3})$		• •	1.65	1.5×10^{-4}

 $^an_{\rm app}$ was determined as indicated in Figures 2 and 4. $^bL_{50}$ indicates the concentration of the variable ligand that resulted in a half-maximal increase or reduction of the rate constants of 45 Ca²⁺ release. c Vesicles were passively loaded with 5 mM 45 Ca²⁺.

represents a low Ca^{2+} release state of the channel. Activation of E_0 by Ca^{2+} in the absence of nucleotide and Mg^{2+} is shown in Figure 2A. ⁴⁵Ca²⁺ efflux was maximal with a rate constant of about $1.5 \, s^{-1}$ in a medium containing about $5 \, \mu M$ free Ca^{2+} and was half-maximally activated at an external Ca^{2+} concentration of $5 \times 10^{-7} \, M$. A Hill plot of the data yielded an apparent n value of 1 for Ca^{2+} activation of Ca^{2+} release (inset of Figure 2A, Table II). This suggests that in the absence of nucleotide and Mg^{2+} the channel does not contain interacting activating binding sites for Ca^{2+} . Figure 2A further shows that ⁴⁵Ca²⁺ efflux was greatly inhibited at millimolar concentrations of Ca^{2+} . As discussed below, the inhibition of Ca^{2+} release appears to be due to the presence of low-affinity inhibitory Ca^{2+} and Mg^{2+} binding sites.

Activation of the ligand-free E₀ form of the channel by AMP-PCP and ATP was investigated at a free extravesicular Ca²⁺ concentration (10⁻⁹ M) which minimally activated the SR Ca²⁺ release channel. A free Ca²⁺ concentration of 10⁻⁹ M was achieved in the rapid-mixing experiments by lowering the Ca²⁺ concentration in the vesicle incubation medium to 0.5 mM ⁴⁵Ca²⁺ and by diluting vesicles into 20 mM EGTA medium. Ca2+ release was half-maximally activated at an AMP-PCP concentration of 2 mM with an apparent n value of 1.9 (Figure 2B, Table II). ATP was somewhat more effective in activating Ca²⁺ release than AMP-PCP, Ca²⁺ efflux being half-maximally activated at 1 mM ATP with an apparent n value of 1.9. At 10⁻⁹ M free Ca²⁺, ATP did not appear to exert its effect by activating the Ca2+ pump of sarcoplasmic reticulum. Uptake media contained 0 or 5 mM Mg²⁺, 5 mM ATP, and 10 μ M ruthenium red.

Figure 2C shows the effects of Mg^{2+} concentration on the Ca^{2+} release behavior of vesicles at 10^{-9} M Ca^{2+} in the absence of adenine nucleotide. In the absence of Mg^{2+} , a rate constant of $0.06 \, s^{-1}$ with an initial release rate of 3 nmol of Ca^{2+} (mg of protein)⁻¹ s^{-1} was observed. The initial release rate was half-maximally reduced at an external Mg^{2+} concentration of 2×10^{-5} M with an apparent n value of 1.1 and was lowered to a limiting value of about 0.2 nmol (mg of protein)⁻¹ s^{-1} ($k = 0.004 \, s^{-1}$) by raising the Mg^{2+} concentration to 5 mM. A similar low rate was measured for control vesicles which lack the channel, suggesting that the small amounts of $^{45}Ca^{2+}$ released at millimolar concentrations of Mg^{2+} were not mediated by the channel.

Activation of E_{Ca} by AMP-PCP. As shown in Table I, both Ca^{2+} and AMP-PCP are required to optimally activate $^{45}\text{Ca}^{2+}$ release from SR vesicles. The dependence of the Ca^{2+} release rate on AMP-PCP concentration in the presence of Ca^{2+} was determined at an optimally activating Ca^{2+} concentration of $4~\mu\text{M}$. As was observed at 10^{-9} M Ca^{2+} (Figure 2B), a fairly high concentration of nucleotide in the 5–10 mM concentration range was required to optimally activate Ca^{2+} -induced Ca^{2+}

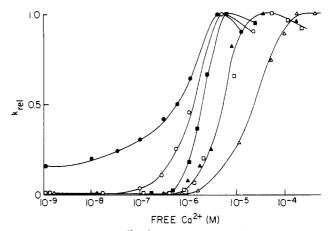


FIGURE 3: Activation of $^{45}\text{Ca}^{2+}$ efflux rate by Ca^{2+} in the presence of AMP-PCP and Mg^{2+} . Heavy SR release vesicles were preincubated for 2 h at 22 °C with 0.5 (\spadesuit , \spadesuit , \triangle) or 5 mM (\circlearrowleft , \spadesuit , \square) $^{45}\text{Ca}^{2+}$. $^{45}\text{Ca}^{2+}$ efflux rates from the Ca^{2+} -permeable vesicle fraction were determined as indicted in Figure 1. Vesicles were diluted into media containing the indicated concentrations of free Ca^{2+} and 5 mM AMP-PCP (\spadesuit), 1 mM Mg²⁺ (\lozenge), 5 mM AMP-PCP plus 5 mM Mg²⁺ (\spadesuit , \blacksquare), or 5 mM AMP-PCP plus 10 mM Mg²⁺ (\spadesuit , \blacksquare).

release (not shown). Ca²⁺ release was half-maximally activated at 1.6 mM AMP-PCP with an apparent n value of 1.6 (Table II).

Activation of E_A , E_{Mg} , and $E_{A,Mg}$ by Ca^{2+} . The effects of activating concentrations of Ca^{2+} on the Ca^{2+} release behavior of the vesicles in the presence of AMP-PCP and Mg²⁺ are illustrated in Figure 3. The flux data were normalized to account for the large differences in 45Ca2+ efflux rates seen in media containing nucleotide or Mg²⁺ (Table I). For vesicles diluted into an optimally activating concentration of 5 mM AMP-PCP, the 45Ca2+ efflux rate constant increased about 6-fold as the external free Ca^{2+} concentration was increased from 10^{-9} to 5×10^{-6} M. $^{45}Ca^{2+}$ efflux was half-maximally activated at 9×10^{-7} M Ca²⁺. The apparent *n* value of Ca²⁺ activation was 0.8 as compared to 1 in the absence of nucleotide (Table II). Substitution of 5 mM AMP-PCP by 1 mM Mg²⁺ greatly reduced the ⁴⁵Ca²⁺ efflux rate constant at micromolar concentrations of external Ca²⁺ (cf. Table I). The apparent n value of Ca^{2+} activation increased to 1.35, and about a 1.5-fold higher Ca^{2+} concentration (1.3 × 10⁻⁶ M) was required to half-maximally activate 45Ca2+ efflux (Table

Figure 3 further shows four Ca²⁺ activation curves which were obtained with vesicles diluted into media containing both AMP-PCP and Mg²⁺. Vesicles filled with 0.5 or 5 mM ⁴⁵Ca²⁺ were diluted into media containing 5 mM AMP-PCP and either 5 or 10 mM total Mg²⁺ (0.7 and 5 mM free Mg²⁺, respectively). A series of similarly shaped Ca²⁺ activation

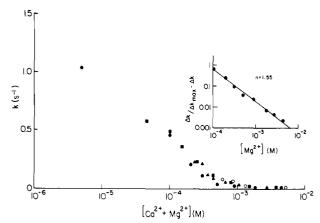


FIGURE 4: Inhibition of ⁴⁵Ca²⁺ efflux by Mg²⁺ and Ca²⁺. ⁴⁵Ca²⁺ efflux rates were determined as indicated in Figure 2A. Vesicles were passively loaded with 5 mM ⁴⁵Ca²⁺; EGTA, Ca²⁺, and Mg²⁺ concentrations and the pH of the dilution media were adjusted so that after mixing the vesicles were present in media containing the indicated concentrations of Mg²⁺ plus free Ca²⁺ at pH 7. Free Ca²⁺ concentrations were 5 (\bullet), 45 (\blacksquare), 250 (\triangle), and 600 (\bigcirc) μ M.

curves was obtained that were shifted to higher Ca²⁺ activating concentrations as the Mg²⁺ concentration in the release medium was increased. A shift to the right was also observed, as the Ca²⁺ concentration in the vesicle medium was decreased. In the presence of AMP-PCP and Mg²⁺, a relatively high Ca²⁺ concentration of $(5 \times 10^{-7})-10^{-6}$ M was required before a noticeable increase in the flux rates could be observed. Above 10⁻⁶ M Ca²⁺, ⁴⁵Ca²⁺ efflux became very sensitive to external Ca²⁺ concentration. The Hill plots of the four Ca²⁺ activation curves yielded apparent n values of 1.7-2.1. These results indicated that in the presence of AMP-PCP and Mg²⁺, there occurred a significant change in the cooperativity of Ca²⁺ activation of Ca²⁺ release, with Ca²⁺ likely acting at two or more interacting activating sites.

Inhibition of E_{Ca} by Mg^{2+} and Ca^{2+} . Ca^{2+} -induced Ca^{2+} release is inhibited by millimolar concentrations of Ca²⁺ (Figure 2A). Figure 4 demonstrates that the E_{Ca} form of the channel is inhibited in a similar manner by Mg²⁺. ⁴⁵Ca²⁺ efflux was half-maximally inhibited at 1.5×10^{-4} M Ca²⁺ or 10^{-4} M Mg²⁺. Apparent *n* values of 1.65 for Ca²⁺ and 1.55 for Mg2+ suggested that the two divalent cations acted on the channel by binding to two or more interacting inhibitory sites. One possibility was that Ca^{2+} and Mg^{2+} bound to the same sites. This was tested by measuring $^{45}Ca^{2+}$ efflux in the presence of varying concentrations of external Ca²⁺ and Mg²⁺. Vesicles were diluted into media containing increasing concentrations of Mg²⁺ and either 5, 45, 250, or 600 μ M free Ca²⁺. As shown in Figure 4, nearly identical inactivation curves were obtained when the 45Ca2+ efflux rate constants were plotted against the sum of the concentrations of the two divalent cations. That the inactivation curves were superimposable suggested that Ca²⁺ and Mg²⁺ likely inhibited ⁴⁵Ca²⁺ release by acting at the same sites.

Inhibition of $E_{Ca,A}$ by Mg^{2+} . The free Mg^{2+} concentration in mammalian skeletal muscle is not known but has been estimated to range from 0.2 to 4 mM in frog skeletal muscle (Gupta & Moore, 1980; Baylor et al., 1982). Table III shows that the rate constant of Ca²⁺- and nucleotide-induced Ca²⁺ release was greatly reduced when the free Mg²⁺ concentration in the release medium was raised from 0 to 4 mM. Varying concentrations of Mg²⁺ were added to media containing 4 μ M free Ca²⁺ and 5 mM AMP-PCP so that the free Mg²⁺ concentration ranged from about 0.1 to 4 mM (experiment 1 of Table III). In the presence of 0.14 mM free Mg²⁺, the rate

Table III: Effect of Mg2+ Concentration on Ca2+-Induced and Adenine Nucleotide Induced 45Ca2+ Releasea

addit			
free AMP-PCP (M)	free Mg ²⁺ (M)	Mg-AMP- PCP (M)	efflux, k (s ⁻¹)
	Experin	nent 1	
5.0×10^{-3}	0	0	56
2.1×10^{-3}	1.4×10^{-4}	2.9×10^{-3}	30
1.3×10^{-3}	2.9×10^{-4}	3.7×10^{-3}	19
6.5×10^{-4}	6.6×10^{-4}	4.3×10^{-3}	14
2.2×10^{-4}	2.2×10^{-3}	4.8×10^{-3}	1.8
1.2×10^{-4}	4.1×10^{-3}	4.9×10^{-3}	1.3
	Experin	nent 2	
0	0	0	1.7
0	2×10^{-3}	0	0.01
10-4	0	0	3.75
10-4	2×10^{-3}	1.9×10^{-3}	0.8

^a Heavy SR vesicles were passively loaded with 5 mM ⁴⁵Ca²⁺. Release media contained after the addition of the vesicles 4×10^{-6} M free Ca²⁺ and the indicated concentrations of nucleotide and Mg²⁺. The first-order rate constants of Ca2+ release from the Ca2+-permeable vesicle population were determined as indicated in Figure 1.

constant of $^{45}\text{Ca}^{2+}$ efflux was reduced from 56 to 30 s⁻¹. A more dramatic decrease of k to 1.3 s⁻¹ was observed when the free Mg²⁺ concentration was increased to 4 mM by the addition of 9 mM Mg²⁺.

One complicating factor of studying the effects of Mg²⁺ in the presence of nucleotide is the formation of a Mg-AMP-PCP complex which may interact differently with the channel. The possibility that the Mg-AMP-PCP complex activates the channel was tested by diluting vesicles into media that contained, in addition to Mg-AMP-PCP, defined concentrations of free Mg²⁺ and nucleotide (experiment 2 of Table III). The rate constant of Ca²⁺ release was reduced 170-fold by the addition of 2 mM Mg²⁺ to the 5 μ M release medium. By contrast, only a 5-fold reduction was observed when vesicles were diluted into media containing 0.1 mM free nucleotide and 0 or 2 mM free Mg²⁺ plus 1.9 mM Mg AMP-PCP. The concentration of free nucleotide in the presence and absence of 2 mM Mg²⁺ was kept constant by increasing total nucleotide and Mg²⁺ concentrations to 2 and 3.9 mM, respectively. One explanation of the data of Table III is that the Mg-AMP-PCP complex activates the channel, thereby minimizing inhibition by Mg²⁺. Another, less likely possibility would be that low concentrations of free nucleotide modify the channel so that its sensitivity to Mg²⁺ is decreased. Regardless of the exact mechanism of nucleotide activation in the presence of Mg²⁺, one important conclusion to be drawn from the data of Table III is that nucleotides render the channel less sensitive to inhibition by Mg²⁺.

The effects of intravesicular Mg²⁺ on Ca²⁺ release were studied by passively loading the vesicles with 2 mM ⁴⁵Ca²⁺ in the presence or absence of 5 mM Mg²⁺. Vesicles were subsequently diluted into release media containing 4 μ M free Ca²⁺, 1 mM AMP-PCP, and 1 mM Mg²⁺. Vesicles incubated in the absence of Mg²⁺ released ⁴⁵Ca²⁺ with a rate constant of 3.5 s⁻¹. Addition of 5 mM Mg²⁺ to the vesicle medium reduced the amount of ⁴⁵Ca²⁺ trapped by the vesicles from 60 to 40 nmol/mg of protein; however, there occurred no change in the rate constant of ⁴⁵Ca²⁺ release. Intravesicular Mg²⁺ appears, therefore, at least under our experimental conditions, not to inhibit ⁴⁵Ca²⁺ efflux. This observation is in accordance with a recent report indicating that Mg2+ can rapidly permeate through the Ca²⁺-activated channel of SR (Nagasaki & Kasai, 1984).

242 BIOCHEMISTRY MEISSNER ET AL.

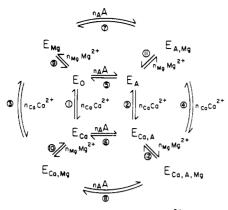


FIGURE 5: Model of regulation of the SR Ca²⁺ release channel by Ca²⁺, Mg²⁺, and adenine nucleotide. Abbreviations: E, SR Ca²⁺ release channel; *n*, apparent number of binding sites per channel; A, adenine nucleotide.

DISCUSSION

We have described a radioisotope flux-rapid-quench-Millipore filtration method for the measurement of rapid release of Ca²⁺ from isolated sarcoplasmic reticulum (SR) vesicle fractions. Using this method, we were able to demonstrate that heavy rabbit skeletal muscle SR vesicles, thought to be derived from the terminal cisternae of sarcoplasmic reticulum (Meissner, 1984), are capable of releasing Ca²⁺ with rates comparable to those expected to occur in muscle. Release rates with a first-order rate constant of 30-100 s⁻¹ were obtained for vesicles diluted into media containing micromolar concentrations of Ca2+ and a 5 mM concentration of the nonhydrolyzable ATP analogue AMP-PCP. In control experiments, using light SR vesicles and [14C]sucrose, it was established that Ca2+ and AMP-PCP did not exert their activating effects by nonspecifically breaking down the permeability barrier of the vesicles.

A major aim of this study was to determine the effects of Ca^{2+} , adenine nucleotide, and Mg^{2+} on the Ca^{2+} release channel of heavy SR vesicles. Dose-response curves were obtained (Table II) which described the formation of six of the seven hypothetical ligand-occupied states of the channel shown in Figure 5. An additional reaction not indicated in Figure 5 was inhibition of E_{Ca} by elevated concentrations of Ca^{2+} (Figure 2A and Table II). The kinetics of Mg^{2+} inhibition of E_{A} and $E_{Ca,A}$ (reactions 11 and 12) and of nucleotide activation of E_{Mg} and $E_{Ca,Mg}$ (reactions 7 and 8) channel states were not determined. Interpretation of these reactions is complicated due to the formation of a Mg-AMP-PCP complex which may interact differently with the channel.

In the kinetic studies, we were in part guided by single channel measurements with a nucleotide-activated Ca²⁺ conducting channel from rabbit skeletal muscle. Using the fusion technique of Miller & Racker (1976) for inserting SR proteins into planar lipid bilayers, we have identified an unusually large (170 pS in 50 mM Ba²⁺) divalent conducting channel in heavy SR vesicle fractions (Smith et al., 1985). ATP or AMP-PCP activated the channel in the presence of micromolar concentrations of Ca²⁺ by increasing the open time of the channel without affecting single channel conductance. Taken together, our vesicle flux and lipid bilayer measurements suggest that Ca²⁺ and ATP affect the gating mechanism of the channel in a saturable and cooperative or noncooperative manner, depending on the experimental conditions. The SR Ca2+ release channel rarely opens in the absence of Ca²⁺ and adenine nucleotide. Ca2+ or ATP by themselves partially activates the channel by opening it for intermittent times. The presence of both ATP and Ca^{2+} fully activates Ca^{2+} release, and the channel is open essentially all the time. Millimolar concentrations of Ca^{2+} and Mg^{2+} inhibit the channel in the presence and absence of nucleotide by a mechanism that, as discussed below, is not well understood at present.

Stimulation of Ca2+ release by Ca2+, adenine nucleotide, and caffeine and inhibition of release by Mg2+ and high concentrations of Ca2+ have been reported by several laboratories (Stephenson, 1981; Onishi, 1981; Winegrad, 1982; Yamamoto & Kasai, 1982; Miyamoto & Racker, 1982; Kirino et al., 1983; Morii & Tonomura, 1983; Nagasaki & Kasai, 1983; Kim et al., 1983; Meissner, 1984). In most of the previous vesicle studies, Ca²⁺ release was slow, i.e., less than 1% of the estimated in vivo rate. Ikemoto et al. (1984) recently reported that T-tubule depolarization triggers rapid Ca2+ release (10-20 nmol/mg of protein, $k_1 \sim 100 \text{ s}^{-1}$) from an actively loaded vesicle fraction containing "triads" (T-tubule/SR junctions). In a preliminary presentation, it was reported that ATP also stimulated rapid release of Ca²⁺ from this triad fraction (Ikemoto & Antoniu, 1985). Nagasaki & Kasai (1983) used the fluorescent indicator dye chlorotetracycline to follow rapid Ca2+ release from passively loaded vesicles and estimated a maximal release rate constant of 80 s⁻¹ in the presence of 12.5 mM caffeine and 10 mM ATP. In the absence of caffeine, the ATP-stimulated Ca²⁺ release rate constant was 20 s⁻¹; this latter constant is somewhat lower than the rate constant of 30-100 s⁻¹ observed in the presence of 5 mM AMP-PCP in this study.

Regulation of the SR Ca^{2+} release channel by Ca^{2+} , adenine nucleotide, and Mg^{2+} has been previously investigated. Using a light-scattering method, Yamanouchi et al. (1984) found that at free Ca^{2+} concentrations ranging from 2×10^{-7} to 10^{-5} M, ATP activation of choline(1+) influx into SR vesicles followed a single-site titration curve with a dissociation constant of about 1 mM. In contrast, our data suggest cooperative binding of ATP to the SR Ca^{2+} release channel, as indicated by a Hill coefficient of 1.6-1.9 for ATP and AMP-PCP activation of Ca^{2+} release at 10^{-9} and 4×10^{-6} M free Ca^{2+} . Our observation that ATP activates the channel at very low concentrations of Ca^{2+} is of interest since it indicates that the channel can be partially activated by either Ca^{2+} or adenine nucleotide.

In agreement with a previous report (Yamamoto & Kasai, 1982), Ca2+ efflux by the ligand-free E₀ form of the channel was activated by Ca²⁺ with a Hill coefficient of 1 (Figure 2A). Kirino et al. (1983) reported a Hill coefficient of 1.2. In the absence of Mg²⁺ and nucleotide, the channel therefore does not appear to be regulated by interacting activating Ca2+ binding sites. The addition of a second ligand such as caffeine, adenine nucleotide, or Mg2+ enhanced or decreased the Ca2+ release rate, and in the case of caffeine and Mg2+ changed the affinity of the Ca²⁺ activation sites for Ca²⁺. However, none of the ligands when added alone was reported to have an appreciable effect on the Hill coefficient of Ca²⁺-activated Ca²⁺ release (Nagasaki & Kasai, 1983; Kirino et al., 1983). In contrast, there occurs, as shown in this study, a marked increase in the cooperativity of Ca²⁺ activation of Ca²⁺ release when the vesicles are diluted into a Mg²⁺- and nucleotidecontaining medium. That nucleotides and Mg2+ render the channel sensitive to external Ca²⁺ in a quite narrow concentration range is probably biologically important and provides a clue for a role of ATP and Mg²⁺ in the process of Ca²⁺induced Ca2+ release by SR. Exactly how ATP and Mg2+ increase the cooperativity of channel activation by Ca²⁺ is not

clear at present. One possible explanation is that the Mg-AMP-PCP complex, which forms in the presence of millimolar concentrations of AMP-PCP and Mg²⁺, is the physiological effector of the channel. This possibility is supported by the fact that in muscle most of the ATP is present in the form of a Mg-ATP complex (Gupta & Moore, 1980).

We are aware of only one other group (Morii & Tonomura, 1983) that has carried out a detailed study of the kinetics of Ca²⁺ activation of Ca²⁺ release in the presence of adenine nucleotide and Mg²⁺. Measurement of the Ca²⁺-releasing action of AMP in the presence of 15 μ M Ca²⁺ and 5 mM Mg²⁺ at 0 °C indicated an apparent dissociation constant of 2 mM for AMP and a Hill coefficient of 1. The amount of Ca²⁺ released decreased from 60% to 0 as the free Ca²⁺ concentration in the release medium was decreased from 2.4 \times 10⁻⁷ to 6 \times 10⁻⁸ M. These results led Morii and Tonomura to suggest the presence of a channel which is inactive in the absence of nucleotide. Binding of one molecule of nucleotide shifted the equilibrium toward an active but closed form of the channel. Different external Ca2+ concentrations were required to open a heterogeneous population of activated channels in an all or none fashion. Our results do not support their model. We observed that adenine nucleotide activated the channel at Ca2+ concentrations of less than 10-8 M. Further, the rate but not the total amount of Ca2+ release depended on external Ca2+ concentration. These observations would seem to favor a model in which all channels are capable of opening at low Ca²⁺ concentrations, where, however, frequency and/or duration of channel opening are regulated by external Ca2+ concentration.

Ca2+ release from SR vesicles is inhibited by Mg2+ in at least two ways. One effect of Mg²⁺ is to increase Ca²⁺ concentrations required to maximally activate Ca2+ release in the presence or absence of caffeine (Nagasaki & Kasai, 1983; Kirino et al., 1983) or adenine nucleotide (Figure 3). Mg²⁺ also drastically reduces the maximal Ca²⁺ release rates seen in the presence or absence of micromolar concentrations of external Ca²⁺ or millimolar concentrations of nucleotide. Mg²⁺ has been suggested to inhibit Ca2+ release by binding competitively to the Ca2+ activating sites (Nagasaki & Kasai, 1983), by decreasing their apparent affinity (Kirino et al., 1983), or by acting as a blocker of the channel as it binds to the transport sites of the channel (Yamamoto & Kasai, 1982). Another possibility that cannot be ruled out at present is that Mg²⁺ binds to external low-affinity regulatory sites distinct from the Ca²⁺ activation and transport sites of the channel.

Whether Mg²⁺ and elevated concentrations of Ca²⁺ inhibit Ca²⁺ release by acting at interacting or noninteracting sites has remained controversial (Yamamoto & Kasai, 1982; Nagasaki & Kasai, 1983; Kirino et al., 1983). Our study shows that the cooperativity of Mg2+ inhibition is dependent on external Ca²⁺ concentration (Table II). At 10⁻⁹ M Ca²⁺, Ca²⁺ efflux was inhibited half-maximally at 2×10^{-5} M Mg²⁺ with a Hill coefficient of 1.1. In the presence of 5×10^{-6} M Ca²⁺, a 5-fold higher Mg²⁺ concentration was required to half-maximally inhibit Ca²⁺ release with a Hill coefficient of 1.55. Our explanation for the differences in the effectiveness and cooperativity of Mg2+ inhibition is that at low external Ca2+ concentration, Mg2+ inhibits the channel primarily by binding to noninteracting activating Ca²⁺ binding sites. By comparing the half-maximally activating Ca2+ and inactivating Mg2concentrations, it is estimated that Ca2+ activating sites favor Ca²⁺ binding over Mg²⁺ by a factor of about 40. Occupation of the activating sites by Ca²⁺ changes the pattern of Mg²⁺ inhibition, in part because, at elevated Mg²⁺ concentrations,

binding to additional low-affinity sites appears to become important. That Mg^{2+} binds to additional sites of the channel is supported by the observation that the inhibitory effects of Mg^{2+} are closely matched by elevated concentrations of Ca^{2+} (Figure 4). Exactly how Mg^{2+} inhibits Ca^{2+} -induced Ca^{2+} release is not clear at present and may require combining vesicle studies with single channel recordings using the lipid bilayer technique. The bilayer studies can reveal more direct information about the process of channel inhibition, such as whether Mg^{2+} acts primarily by binding to the transport sites or to regulatory sites on the channel.

In the absence of Mg²⁺, heavy SR vesicles released ⁴⁵Ca²⁺ with a maximal first-order rate constant of 30-100 s⁻¹. By comparison, in frog skeletal muscle following an action potential, Ca²⁺ has been estimated to be released with a rate constant of about 50-100 s⁻¹ (Baylor et al., 1983; Melzer et al., 1984). However, Ca²⁺ release in muscle likely occurs in the presence of significant albeit unknown concentrations of free Mg²⁺. When conditions considered to approximate those in frog muscle [0.2-4 mM free Mg²⁺ (Gupta & Moore, 1980; Baylor et al., 1982), 5 µM free Ca²⁺, and 5 mM nucleotide (Kushmerick, 1983)] were used, ⁴⁵Ca²⁺ was released from rabbit skeletal muscle SR vesicles at 22 °C with a rate constant ranging from about 25 to 1 s⁻¹ (Table III). At 37 °C, the rate constants are probably 2-3 times greater than at 22 °C. Heavy SR vesicles therefore demonstrate Ca2+- and nucleotide-induced Ca²⁺ release rates which, at least in the presence of low free Mg²⁺ concentrations, appear to approach those in

Registry No. AMP-PCP, 3469-78-1; ATP, 56-65-5; Ca, 7440-70-2; Mg, 7439-95-4.

REFERENCES

Baylor, S. M., Chandler, W. K., & Marshall, M. W. (1982) J. Physiol. (London) 331, 105-137.

Baylor, S. M., Chandler, W. K., & Marshall, M. W. (1983)J. Physiol. (London) 344, 625-666.

Ebashi, S. (1976) Annu. Rev. Physiol. 38, 293-313.

Endo, M. (1977) Physiol. Rev. 57, 71-108.

Fabiato, A. (1981) J. Gen. Physiol. 78, 457-497.

Fabiato, A. (1983) Am. J. Physiol. 245, C1-C14.

Gupta, R. K., & Moore, R. D. (1980) J. Biol. Chem. 255, 3987-3993.

Ikemoto, N., & Antoniu, B. (1985) Biophys. J. 45, 56a.

Ikemoto, N., Antoniu, B., & Kim, D. H. (1984) J. Biol. Chem. 259, 13151-13158.

Inesi, G. (1985) Annu. Rev. Physiol. 47, 573-601.

Kim, D. H., Ohnishi, S. T., & Ikemoto, N. (1983) J. Biol. Chem. 258, 9662-9668.

Kirino, Y., Osakabe, M., & Shimizu, H. (1983) J. Biochem. (Tokyo) 94, 1111-1118.

Kushmerick, M. J. (1983) in *Handbook of Physiology, Section* 10: Skeletal Muscle (Peachey, L. D., Adrian, R. H., & Geiger, S. R., Eds.) pp 189-236, American Physiological Society, Bethesda, MD.

Martonosi, A. N., & Beeler, T. J. (1983) in Handbook of Physiology, Section 10: Skeletal Muscle (Peachey, L. D., Adrian, R. H., & Geiger, S. R., Eds.) pp 417-485, American Physiological Society, Bethesda, MD.

Meissner, G. (1983) Mol. Cell. Biochem. 55, 65-82.

Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374.

Meissner, G., & Darling, E. (1985) Biophys. J. 47, 285a.Melzer, W., Rios, E., & Schneider, M. F. (1984) Biophys. J. 45, 637-641.

Miller, C., & Racker, E. (1976) J. Membr. Biol. 30, 283-300.

- Miyamoto, H., & Racker, E. (1982) J. Membr. Biol. 66, 192-201.
- Morii, H., & Tonomura, Y. (1983) J. Biochem. (Tokyo) 93, 1271-1285.
- Nagasaki, K., & Kasai, M. (1983) J. Biochem. (Tokyo) 94, 1101-1109.
- Nagasaki, K., & Kasai, M. (1984) J. Biochem. (Tokyo) 96, 1769-1775.
- Neubig, R. R., Boyd, N. D., & Cohen, J. B. (1982) Biochemistry 21, 3460-3467.
- Ohnishi, S. T. (1981) in The Mechanism of Gated Calcium Transport Across Biological Membranes (Ohnishi, S. T.,
- & Endo, M., Eds.) pp 275-293, Academic Press, New York. Smith, J. S., Coronado, R., & Meissner, G. (1985) *Nature* (*London*) 316, 446-449.
- Stephenson, E. W. (1981) Am. J. Physiol. 240, C1-C19.Walker, J. W., Takeyasu, K., & McNamee, M. G. (1982) Biochemistry 21, 5384-5389.
- Winegrad, S. (1982) Annu. Rev. Physiol. 44, 451-462.
- Yamamoto, N., & Kasai, M. (1982) J. Biochem. (Tokyo) 92, 485-496.
- Yamanouchi, H., Kanemasa, T., & Kasai, M. (1984) J. Biochem. (Tokyo) 95, 161-166.

Evidence of a Role for Calmodulin in the Regulation of Calcium Release from Skeletal Muscle Sarcoplasmic Reticulum[†]

Gerhard Meissner*

Departments of Biochemistry and Nutrition and of Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514

Received May 14, 1985

ABSTRACT: The effect of calmodulin and calmodulin inhibitors on the "Ca²+ release channel" of "heavy" skeletal muscle sarcoplasmic reticulum (SR) vesicles was investigated. SR vesicles were passively loaded with 45 Ca²+ in the presence of calmodulin and its inhibitors, followed by measurement of 45 Ca²+ release rates by means of a rapid-quench-Millipore filtration method. Calmodulin at a concentration of 2–10 μ M reduced 45 Ca²+ efflux rates from passively loaded vesicles by a factor of 2–3 in media containing 10^{-6} – 10^{-3} M Ca²+. At 10^{-9} M Ca²+, calmodulin was without effect. 45 Ca²+ release rates were varied 1000-fold ($k_1 \simeq 0.1$ – 100 s^{-1}) by using 10^{-5} M Ca²+ with either Mg²+ or the ATP analogue adenosine 5'-(β , γ -methylenetriphosphate) in the release medium. In all instances, a similar 2–3-fold reduction in release rates was observed. At 10^{-5} M Ca²+, 45 Ca²+ release was half-maximally inhibited by about 2×10^{-7} M calmodulin, and this inhibition was reversible. Heavy SR vesicle fractions contained 0.1–0.2 μ g of endogenous calmodulin/mg of vesicle protein. However, the calmodulin inhibitors trifluoperazine, calmidazolium, and compound 48/80 were without significant effect on 45 Ca²+ release at concentrations which inhibit calmodulin-mediated reactions in other systems. Studies with actively loaded vesicles also suggested that heavy SR vesicles contain a Ca²+ permeation system that is inhibited by calmodulin.

Muscle contracts when the free Ca²⁺ concentration of the myofibrillar space reaches 10⁻⁶-10⁻⁵ M by the release of Ca²⁺ stores from sarcoplasmic reticulum (SR)1 via a putative Ca2+ channel (Ebashi, 1976; Endo, 1977; Winegrad, 1982). Muscle relaxes again when Ca2+ concentration is decreased below 10-7 M through the action of the membrane-bound Mg²⁺-dependent, Ca2+-stimulated ATPase or Ca2+ pump of SR (Tada et al., 1978; Ikemoto, 1982; Martonosi & Beeler, 1983; Inesi, 1985). Release of Ca²⁺ by SR is triggered by an action potential at the neuromuscular junction that is communicated to SR via an extension of the surface membrane, the T system. Although the molecular basis of T-system depolarization-induced Ca2+ release by SR has remained obscure, recent studies have indicated the presence of a ligand-gated SR Ca²⁺ release channel which is activated by Ca2+ and adenine nucleotides and inhibited by Mg²⁺ (Stephenson, 1981; Onishi, 1981;

The influence of calmodulin on Ca²⁺ uptake and release in SR has been studied primarily by using isolated vesicle fractions. In cardiac muscle, Ca²⁺-stimulated ATPase and Ca²⁺ uptake activities are stimulated by calmodulin- and cAMP-dependent protein kinases. Both kinases exert their activating effects by phosphorylation of a 22 000-dalton protein called phospholamban (Tada et al., 1982). Skeletal muscle SR vesicles also have been found to contain a calmodulin-dependent protein kinase as well as calmodulin; however, activation of the Ca²⁺ transport system by calmodulin has not yet been shown (Campbell & MacLennan, 1981; Chiesi & Carafoli, 1982, 1983; Seiler et al., 1984; Eibschutz et al., 1984).

Yamamoto & Kasai, 1982; Miyamoto & Racker, 1982; Fabiato, 1983; Kirino et al., 1983; Morii & Tonomura, 1983; Nagasaki & Kasai, 1983; Kim, et al., 1983; Meissner, 1984; Meissner et al., 1986).

[†]Supported by U.S. Public Health Service Grant AM18687.

^{*} Address correspondence to this author at the Department of Biochemistry and Nutrition, The University of North Carolina at Chapel

¹ Abbreviations: SR, sarcoplasmic reticulum; EGTA, ethylene glycol bis(β -aminoethyl ether)-N,N,N',N'-tetraacetic acid; AMP-PCP, adenosine 5'-(β , γ -methylenetriphosphate); Pipes, 1,4-piperazinediethanesulfonic acid; cAMP, adenosine cyclic 3',5'-phosphate.